Transforming growth factor-beta induces renal epithelial jagged-1 expression in fibrotic disease.
نویسندگان
چکیده
For elucidation of the mechanisms by which growth factors and cytokines affect renal epithelial cells, gene array analysis of renal cells cultured in the presence of transforming growth factor-beta1 (TGF-beta1) was performed. Many genes that were not previously considered to be involved in renal cell biologic processes were affected, one of which was jagged-1. The jagged ligand/notch receptor family controls the formation of boundaries between groups of cells and regulates cell fates. On the basis of the array analysis, jagged-1 expression was further evaluated in cultured cells and in C57BL/6 mice with a model of unilateral ureteral obstruction (UUO). Recombinant human TGF-beta1 increased jagged-1 mRNA levels at concentrations between 10(-11) and 10(-10) M. There was a commensurate increase in jagged-1 protein levels, as assessed by Western blotting. The expression of jagged-1 mRNA and protein was observed to be significantly increased in the kidneys of C57BL/6 mice with obstructed ureters, compared with the contralateral kidneys, at 7 and 14 d of UUO. Immunohistochemical analyses demonstrated jagged-1 expression in distal tubules of kidneys from normal mice or contralateral kidneys from mice with UUO. Jagged-1 protein expression was increased in tubules not yet in apparent atrophy in the kidneys with an obstructed ureter. Jagged-1 expression was significantly increased in the kidneys of normal mice treated with TGF-beta1 and was decreased in the kidneys of mice with UUO treated with a TGF-beta receptor II-Fc chimera. These results suggest that jagged-1 is expressed in normal kidneys and that this expression is upregulated during renal disease, in a TGF-beta-dependent manner.
منابع مشابه
Angiotensin II Contributes to Renal Fibrosis Independently of Notch Pathway Activation
Recent studies have described that the Notch signaling pathway is activated in a wide range of renal diseases. Angiotensin II (AngII) plays a key role in the progression of kidney diseases. AngII contributes to renal fibrosis by upregulation of profibrotic factors, induction of epithelial mesenchymal transition and accumulation of extracellular matrix proteins. In cultured human tubular epithel...
متن کاملTransforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions.
The Snail transcription factor has been described recently as a strong repressor of E-cadherin in epithelial cell lines, where its stable expression leads to the loss of E-cadherin expression and induces epithelial-mesenchymal transitions and an invasive phenotype. The mechanisms regulating Snail expression in development and tumor progression are not yet known. We show here that transforming g...
متن کاملProtein kinase B/Akt activity is involved in renal TGF-β1-driven epithelial-mesenchymal transition in vitro and in vivo
The molecular pathogenesis of diabetic nephropathy (DN), the leading cause of end-stage renal disease worldwide, is complex and not fully understood. Transforming growth factor-beta (TGF-beta1) plays a critical role in many fibrotic disorders, including DN. In this study, we report protein kinase B (PKB/Akt) activation as a downstream event contributing to the pathophysiology of DN. We investig...
متن کاملSalt intake induces epithelial-to-mesenchymal transition of the peritoneal membrane in rats.
BACKGROUND Dietary salt intake has been linked to hypertension and cardiovascular disease through volume-mediated effects. Accumulating evidence points to direct negative influence of salt intake independent of volume overload, such as cardiac and renal fibrosis, mediated through transforming growth factor beta (TGF-beta). Epithelial-to-mesenchymal transition (EMT) has been implicated as a key ...
متن کاملAngiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3.
Connective tissue growth factor (CTGF) plays a critical role in angiotensin II (Ang II)-mediated hypertensive nephropathy. The present study investigated the mechanisms and specific roles of individual Smads in Ang II-induced CTGF and collagen I expression in tubular epithelial cells with deletion of transforming growth factor (TGF)-beta1, overexpression of Smad7, or knockdown of Smad2 or Smad3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 13 6 شماره
صفحات -
تاریخ انتشار 2002